{-# LANGUAGE CPP #-}
#include "containers.h"
module Data.Map.Internal.Debug where
import Data.Map.Internal (Map (..), size, delta)
import Control.Monad (guard)
showTree :: (Show k,Show a) => Map k a -> String
showTree m
= showTreeWith showElem True False m
where
showElem k x = show k ++ ":=" ++ show x
showTreeWith :: (k -> a -> String) -> Bool -> Bool -> Map k a -> String
showTreeWith showelem hang wide t
| hang = (showsTreeHang showelem wide [] t) ""
| otherwise = (showsTree showelem wide [] [] t) ""
showsTree :: (k -> a -> String) -> Bool -> [String] -> [String] -> Map k a -> ShowS
showsTree showelem wide lbars rbars t
= case t of
Tip -> showsBars lbars . showString "|\n"
Bin _ kx x Tip Tip
-> showsBars lbars . showString (showelem kx x) . showString "\n"
Bin _ kx x l r
-> showsTree showelem wide (withBar rbars) (withEmpty rbars) r .
showWide wide rbars .
showsBars lbars . showString (showelem kx x) . showString "\n" .
showWide wide lbars .
showsTree showelem wide (withEmpty lbars) (withBar lbars) l
showsTreeHang :: (k -> a -> String) -> Bool -> [String] -> Map k a -> ShowS
showsTreeHang showelem wide bars t
= case t of
Tip -> showsBars bars . showString "|\n"
Bin _ kx x Tip Tip
-> showsBars bars . showString (showelem kx x) . showString "\n"
Bin _ kx x l r
-> showsBars bars . showString (showelem kx x) . showString "\n" .
showWide wide bars .
showsTreeHang showelem wide (withBar bars) l .
showWide wide bars .
showsTreeHang showelem wide (withEmpty bars) r
showWide :: Bool -> [String] -> String -> String
showWide wide bars
| wide = showString (concat (reverse bars)) . showString "|\n"
| otherwise = id
showsBars :: [String] -> ShowS
showsBars bars
= case bars of
[] -> id
_ -> showString (concat (reverse (tail bars))) . showString node
node :: String
node = "+--"
withBar, withEmpty :: [String] -> [String]
withBar bars = "| ":bars
withEmpty bars = " ":bars
valid :: Ord k => Map k a -> Bool
valid t
= balanced t && ordered t && validsize t
ordered :: Ord a => Map a b -> Bool
ordered t
= bounded (const True) (const True) t
where
bounded lo hi t'
= case t' of
Tip -> True
Bin _ kx _ l r -> (lo kx) && (hi kx) && bounded lo (<kx) l && bounded (>kx) hi r
balanced :: Map k a -> Bool
balanced t
= case t of
Tip -> True
Bin _ _ _ l r -> (size l + size r <= 1 || (size l <= delta*size r && size r <= delta*size l)) &&
balanced l && balanced r
validsize :: Map a b -> Bool
validsize t = case slowSize t of
Nothing -> False
Just _ -> True
where
slowSize Tip = Just 0
slowSize (Bin sz _ _ l r) = do
ls <- slowSize l
rs <- slowSize r
guard (sz == ls + rs + 1)
return sz